

 Navigation

 	
 index

 	
 next |

 	FatGHoL 5.4 documentation

FatGHoL documentation

	Author:	Riccardo Murri <riccardo.murri@gmail.com>

	Date:	2012-02-08

	Revision:	$Revision$

Contents:

	Installation of FatGHoL
	Initial installation

	Upgrade

	HTML Documentation

	Using FatGHoL
	The graphs action

	The homology action

	The latex action

	The valence action

	Checkpoint directory

	FatGHoL programming API
	Fatgraph-related modules

	Utility modules

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Riccardo Murri.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	FatGHoL 5.4 documentation

Installation of FatGHoL

Note

Although it is theoretically possible to install FatGHoL in
Windows or MacOSX, I have never attempted that.

Therefore, the following instructions are Linux-only.

These instructions show how to install FatGHoL from its source
repository [http://code.google.com/p/fatghol/source/browse] into a separate directory. This has the advantage that
all code is confined in a single directory, and can thus be easily
replaced/removed. The instructions can be easily adapted to
system-wide installation by anyone having a bit of familiarity with
Linux system administration.

Although FatGHoL is a pure-Python [http://www.python.org/] module, it depends on the LinBox [http://linalg.org/]
exact linear algebra library for computing the rank of homology
matrices. Unfortunately, this complicates the installation procedure:
LinBox [http://linalg.org/] depends on several other libraries, which must be downloaded
and compiled. The sections below detail what should be installed in
order to get a working FatGHoL installation.

Initial installation

0. The prerequisite of prerequisites: C++ compiler and SVN

Before you install anything else, you need to have a working C and C++
compiler on the system, and the SubVersion [http://subversion.apache.org/] (SVN) source control system.
This is generally not a problem on Linux systems, which come with the
GCC [http://gcc.gnu.org/] compiler preinstalled, and SVN is available as an optional
package. To check if you have a C++ compiler installed, type the
following commands at your shell prompt:

c++ --version; svn --version

If you get output similar to the following (the version number and
copyright may vary), then everything is OK:

c++ (Ubuntu/Linaro 4.6.1-9ubuntu3) 4.6.1
Copyright (C) 2011 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

svn, version 1.6.12 (r955767)
 compiled Aug 5 2011, 17:07:24

Copyright (C) 2000-2009 CollabNet.
Subversion is open source software, see http://subversion.tigris.org/
...

If you instead get a “command not found” error, then you need to
install the C/C++ compiler and SVN:

	On Debian [http://www.debian.org/] and Ubuntu [http://www.ubuntu.com/], install packages subversion, gcc and
g++:

sudo apt-get install subversion gcc g++

	On Fedora [http://www.fedoraproject.org/], RHEL [http://www.redhat.com/products/enterprise-linux/], or CentOS [http://www.centos.org/], install packages subversion,
gcc and gcc-c++:

run this command as "root" user
yum install subversion gcc gcc-c++

	On other Linux distributions, please refer to your distribution
website for instructions.

1. Download the FatGHoL sources into the installation directory

Check-out the fatghol files into the installation directory:

svn checkout http://fatghol.googlecode.com/svn/trunk/ "$HOME/fatghol"
cd "$HOME/fatghol"

In this step and in the following ones, the directory
$HOME/fatghol is be the installation folder of FatGHoL. You can
change this to another directory path; any directory that’s
writable by your Linux account will be OK.

2. Install auxiliary libraries and software

This is the crucial step: we’re now going to install all the software
required by FatGHoL and LinBox [http://linalg.org/] in one go.

On Debian [http://www.debian.org/] and Ubuntu [http://www.ubuntu.com/], the required software is already available as
optional system packages, so it can be installed with ease; an
installation script is provided for other Linux systems, which
should be able to install the required software without assistance.

	On Debian [http://www.debian.org/] and Ubuntu [http://www.ubuntu.com/] systems, the following command should install
all the required software:

sudo apt-get install python-dev swig liblinbox-dev

	On other systems, you may want to use the prereq.sh script that
you can find in the FatGHoL installation directory. Invoking the
script like this:

cd $HOME/fatghol
./prereq.sh

will download and install all necessary dependencies into a
directory sw (created inside the FatGHoL installation
directory).

You can edit the initial section of the prereq.sh script to
select what software needs to be installed on your system. The
default is to install all dependencies.

Note

The prereq.sh script may take a very long time to complete;
especially the compilation of the linear algebra library ATLAS can
take hours!

On the other hand, if you interrupt the script, just invoke it
again with ./prereq.sh and it should be able to pick up from
whence it left.

	If the script does not work, you may want to attempt installation
from source of the packages, according to the instructions given on
the respective websites. These are the packages needed by
FatGHoL:

	Python [http://www.python.org/], version (at least) 2.6

	SWIG [http://www.swig.org/] (version 1.3.40 is known to work well with FatGHoL)

	LinBox [http://linalg.org/], at least version 1.1.6

Note that the ./mgn.sh script for running graph homology
computations expects the libraries to be available in the sw
directory withing the FatGHoL installation directory.

3. Install FatGHoL

Last step: run the setup.py script to compile the glue code that
links FatGHoL with LinBox [http://linalg.org/]:

cd $HOME/fatghol
python setup.py develop

Note

If you have installed Python with the installation script
prereq.py, then you need to type the following command before
you run setup.py, to be sure it is executed by the Python
interpreter installed in step 2.:

PATH=$HOME/fatghol/sw/bin:$PATH
export PATH

4. Check your installation

Now you can check your FatGHoL installation; just type the command:

./mgn.sh selftest

and you should see the following output appear on your screen
(elapsed times will of course be different):

Module 'rg' OK, passed all doctests.
Module 'homology' OK, passed all doctests.
Module 'graph_homology' OK, passed all doctests.
Module 'combinatorics' OK, passed all doctests.
Module 'iterators' OK, passed all doctests.
Module 'cyclicseq' OK, passed all doctests.
Checking homology algorithm (no checkpointing)
 Computation of M_{0,3} homology: OK (elapsed: 0.010s)
 Computation of M_{0,4} homology: OK (elapsed: 0.110s)
 Computation of M_{0,5} homology: OK (elapsed: 24.030s)
 Computation of M_{1,1} homology: OK (elapsed: 0.010s)
 Computation of M_{1,2} homology: OK (elapsed: 0.180s)
 Computation of M_{2,1} homology: OK (elapsed: 6.050s)
Checking homology algorithm (checkpointing)
 Computation of M_{0,3} homology: OK (elapsed: 0.000s)
 Computation of M_{0,4} homology: OK (elapsed: 0.120s)
 Computation of M_{0,5} homology: OK (elapsed: 24.520s)
 Computation of M_{1,1} homology: OK (elapsed: 0.000s)
 Computation of M_{1,2} homology: OK (elapsed: 0.120s)
 Computation of M_{2,1} homology: OK (elapsed: 6.020s)
Checking homology algorithm (restoring from checkpointed state)
 Computation of M_{0,3} homology: OK (elapsed: 0.000s)
 Computation of M_{0,4} homology: OK (elapsed: 0.040s)
 Computation of M_{0,5} homology: OK (elapsed: 0.350s)
 Computation of M_{1,1} homology: OK (elapsed: 0.000s)
 Computation of M_{1,2} homology: OK (elapsed: 0.020s)
 Computation of M_{2,1} homology: OK (elapsed: 0.090s)

If you get errors, do not despair! Feel free to write me
<mailto:riccardo.murri@gmail.com> and I will do my best to help.

Upgrade

These instructions show how to upgrade the FatGHoL scripts to the
latest version found in the source repository [http://code.google.com/p/fatghol/source/browse].

	cd to the directory containing the FatGHoL virtualenv;
assuming it’s named fatghol as in the above installation
instructions, you can issue the commands:

cd $HOME/fatghol # use '/opt/fatghol' if root

	Upgrade the fatghol source and run the setup.py script again:

svn update
export PATH=$HOME/fatghol/sw/bin:$PATH
python setup.py develop

HTML Documentation

HTML documentation for the FatGHoL programming interface can be read
online at:

http://fatghol.googlecode.com/svn/trunk/doc/html/index.html

You can also generate a local copy from the sources:

cd $HOME/fatghol # use '/opt/fatghol' if root
cd doc
make html

Note that you need the Python package Sphinx <http://sphinx.pocoo.org>
in order to build the documentation locally.

 Copyright 2012, Riccardo Murri.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	FatGHoL 5.4 documentation

Using FatGHoL

FatGHoL comes with a front-end script to compute the (co)homology of
the moduli space of marked smooth Riemann surfaces (using Kontsevich’
“graph homology” complex).

The front-end script is called mgn.sh; you can invoke it with the
--help command line option to get a recap of its functionality:

$./mgn.sh --help
usage: mgn [-h] [-D [DEBUG]] [-l LOGFILE] [-o OUTFILE] [-s CHECKPOINT_DIR]
 [-u] [-v] [-V]
 ACTION [ARG [ARG ...]]

 Actions:

 graphs G N
 Generate the graphs occurring in M_{g,n}.

 homology G N
 Print homology ranks of M_{g,n}.

 latex G N [-s DIR] [-o FILE]
 Read the listings of M_{g,n} fatgraphs (from directory DIR)
 and output a pretty-print catalogue of the graphs as LaTeX documents.

 valences G N
 Print the vertex valences occurring in M_{g,n} graphs.

 shell
 Start an interactive PyDB shell.

 selftest
 Run internal code tests and report failures.

positional arguments:
 ACTION Action to perform, see above.
 ARG Arguments depend on the actual action, see above.

optional arguments:
 -h, --help show this help message and exit
 -D [DEBUG], --debug [DEBUG]
 Enable debug features:
 * pydb -- run Python debugger if an error occurs
 * profile -- dump profiler statistics in a .pf file.
 Several features may be enabled by separating them
 with a comma, as in '-D pydb,profile'.
 -l LOGFILE, --logfile LOGFILE
 Redirect log messages to the named file
 (by default log messages are output to STDERR).
 -o OUTFILE, --output OUTFILE
 Save results into named file.
 -s CHECKPOINT_DIR, --checkpoint CHECKPOINT_DIR
 Directory for saving computation state.
 -u, --afresh Do NOT restart computation from the saved state in checkpoint directory.
 -v, --verbose Print informational and status messages as the computation goes on.
 -V, --version show program's version number and exit

That should be pretty much self-explanatory; however a bit more detail
is given below.

The graphs action

With ./mgn.sh graphs 0 4 (for example) you can print a list of
all the fatgraphs having genus 0 and 4 boundary cycles. If you want
to save the list to a file, use the -o option, followed by the
file name.

The list of fatgraphs is also saved in directory M0,4.data/ in several
.list files, depending on the number of vertices. For instance,
the M0,4-MgnGraphsIterator3.list file is the one collecting
fatgraphs with 3 vertices.

The homology action

With ./mgn.sh homology 0 4 (for example), you can print the Betti
numbers of the moduli space of smooth marked Riemann surfaces having
genus 0 and 4 marked points. If you want to save the result to a
file, use the -o option, followed by the file name.

Internally, the homology function uses the graphs function, so
it generates all by-products of that function. In particular, graphs
lists are generated and saved in the checkpoint directory
(M0,4.data in this example).

In addition to graph lists, the boundary operator matrices are
computed and saved in the checkpoint directory. After their ranks
have been computed, they are saved as well, so invoking the
homology action with a fully-populated checkpoint directory gives
the result almost istantaneously.

The latex action

This reads the contents of an existing checkpoint directory and
generates a LaTeX report on all the graphs: what graphs are there,
their automorphisms and markings, etc.

To save the report into a file, use the -o option followed by the
file name, e.g.:

./mgn.sh latex 0 4 -o report.tex

The name of the checkpoint directory is automatically generated
from the parameters G and N; use the -s option to use a
different directory.

The valence action

This prints the valences of vertices of fatgraphs with given genus and
number of boundary cycles.

As this is a very simple computation, nothing is saved to the
checkpoint directory.

Checkpoint directory

This is a directory where FatGHoL saves result of
computationally-expensive functions. When FatGHoL is invoked again at
a later time, it loads the results from the checkpoint directory
instead of calculating them again; this results in a substantial
speedup. However, you can use the -u command-line option to tell
FatGHoL to ignore the contents of a checkpoint directory.

The name of the checkpoint directory is automatically generated
from the parameters G and N; use the -s option to use a
different directory.

There is no way of avoiding that FatGHoL creates a checkpoint
directory and populates it.

 Copyright 2012, Riccardo Murri.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	FatGHoL 5.4 documentation

FatGHoL programming API

This is the documentation of the functions and classes available in
the fatghol Python module, for use in your own programs.

Fatgraph-related modules

This is the core of FatGHOL: the Python modules that implement an
interface for generating fatgraphs and computing their homology
complex.

fatghol.rg

fatghol.homology

fatghol.graph_homology

fatghol.valences

Utility modules

These are support modules, used by the core FatGHoL modules. They are
more general in nature and most code from these modules could be
packaged separately and re-used in other projects.

fatghol.aggregate

fatghol.cache

fatghol.combinatorics

fatghol.const

fatghol.cyclicseq

fatghol.iterators

fatghol.loadsave

fatghol.output

fatghol.runtime

fatghol.timing

fatghol.utils

 Copyright 2012, Riccardo Murri.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	FatGHoL 5.4 documentation

Index

 Copyright 2012, Riccardo Murri.
 Created using Sphinx 1.3.1.

 search.html

 Navigation

 		
 index

 		FatGHoL 5.4 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Riccardo Murri.
 Created using Sphinx 1.3.1.

_static/down.png

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment.png

_static/ajax-loader.gif

_static/file.png

_static/plus.png

_static/comment-close.png

_static/minus.png

